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Abstract. Egocentric videos provide comprehensive contexts for user
and scene understanding, spanning multisensory perception to behavioral
interaction. We propose Spherical World-Locking (SWL) as a general
framework for egocentric scene representation, which implicitly trans-
forms multisensory streams with respect to measurements of head orien-
tation. Compared to conventional head-locked egocentric representations
with a 2D planar field-of-view, SWL effectively offsets challenges posed
by self-motion, allowing for improved spatial synchronization between
input modalities. Using a set of multisensory embeddings on a world-
locked sphere, we design a unified encoder-decoder transformer architec-
ture that preserves the spherical structure of the scene representation,
without requiring expensive projections between image and world coor-
dinate systems. We evaluate the effectiveness of the proposed framework
on multiple benchmark tasks for egocentric video understanding, includ-
ing audio-visual active speaker localization, auditory spherical source
localization, and behavior anticipation in everyday activities.

Keywords: Egocentric Vision · Audio-Visual Learning

1 Introduction

Egocentric videos provide comprehensive context from an individual’s perspec-
tive, serving an essential role in user and scene understanding. Compared to con-
ventional exocentric videos, egocentric videos capture in-the-wild context from a
human-centric viewpoint covering daily routine activities and social interactions
like conversation. Therefore, it is paramount to capture the interplay between
visual, auditory, and behavioral modalities for comprehensive reasoning tasks in
line with how humans would perceive their surroundings [6, 53]. Accordingly, a
significant amount of research has been dedicated to exploring the integration of
multiple modalities in egocentric videos [12,22,34,38,45,58,63]. In this work, we
develop a general framework for multisensory egocentric perception and apply
it to audio-visual and behavioral localization problems in egocentric videos.

⋆ Work done during an internship at Meta.
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Fig. 1: The key idea of our framework. (a) In conventional Head-Locked (HL) frame-
works, multisensory observations captured from head-mounted devices are used as-is,
where self-motion introduces variability in otherwise static scenes. (b) Our Spherical
World-Locking (SWL) framework compensates for self-motion with negligible overhead,
leading to lower variability and better learnable scene representation.

One of the most distinctive characteristics of egocentric videos is self-motion.
This is best illustrated in a group conversation where people frequently move
their heads to engage in various actions such as nodding, making eye contact, or
visually exploring their surroundings. That is, self-motion poses an important
challenge for egocentric video understanding, as the relative location of stimuli
in a head-locked reference frame would also move accordingly. Other factors
stemming from self-motion, like motion drift and a limited field-of-view, also
contribute to the increased complexity. Therefore, self-motion is often treated as
a challenge in egocentric video understanding [5, 33,42,46,58].

Nevertheless, self-motion is one of the core components of egocentric scene
understanding, acting as a strong proxy of behavior and its underlying inten-
tion. For instance, the internal representations of our perceived surroundings do
not change significantly with respect to drastic self-motion and always remain
gravity-aligned thanks to behavioral responses like the vestibulo-ocular [70] and
proprioceptive reflexes [20]. We can also effortlessly coordinate head motion to
proactively sharpen our perception of attended contexts [7, 65]. In other words,
humans are efficient stabilizers as well as utilizers of self-motion, and we claim
that these traits can be beneficially adapted for egocentric video understanding.

To this end, we introduce Spherical World-Locking (SWL) as a novel frame-
work for integrating self-motion into egocentric videos. As depicted in Fig. 1,
in contrast to conventional Head-Locked frameworks that learn to offset vari-
ability from self-motion in raw input streams, SWL forms a virtual sphere
around a person and efficiently transforms audio-visual streams based on mea-
surements of their relative head orientation. This is generally applicable in ego-
centric videos by leveraging sensors like inertial measurement units in commer-
cial head-mounted devices [12,13,22,45]. SWL inherently offsets challenges posed
by self-motion such as drift and visibility, while maintaining the strengths of a
head-locked representation like compatibility with conventional frameworks.

We propose the Multisensory Spherical World-Locked Transformer (MuST),
a novel architecture that incorporates self-motion-aware multisensory inputs for
representation learning. MuST leverages self-motion as a useful cue for learn-
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Fig. 2: Three multisensory localization tasks in egocentric videos that we tackle in this
work: (a) audio-visual active speaker localization (§5.1), (b) auditory spherical source
localization (§5.2), and (c) egocentric behavior anticipation (§5.3).

ing with negligible computational overhead via spherical position embeddings.
To further facilitate the interaction of multisensory inputs on the world-locked
sphere, we introduce modality-wise self-attention and quaternion-based spatial
similarity. In addition, multiple classification tokens improve localized predic-
tions and allow for flexible decoding on multiple target domains, e.g ., field-of-
view, spherical, and pointwise prediction.

We validate the effectiveness of our framework with three representative
benchmarks for multisensory egocentric perception and understanding. First, we
outperform prior arts by a significant margin in the audio-visual active speaker
localization benchmark on the EasyCom dataset [13]. Second, we obtain su-
perior auditory spherical source localization performance on the RLR-CHAT
dataset [50, 76]. Finally, to demonstrate the generalizability of our framework,
we extend it to egocentric behavior anticipation in everyday activities on the Aria
Everyday Activities (AEA) dataset [45], where we establish a new benchmark of
jointly predicting a set of cohesive behaviors from multisensory contexts.

2 Related Works

Egocentric Video Understanding. A variety of reasoning tasks have been
studied from the wearer-centric perspective based on the wearer’s spatiotem-
poral or multimodal context [12, 22, 23]. Some prior works focus on improving
egocentric human-object interaction by predicting the wearer’s hand motion [43]
or hand segmentation [30] and discerning distracting objects [71]. In addition, in-
formation from third-person videos can be transferred to the egocentric domain
by means of knowledge distillation [40] or temporal alignment without paired
data [75]. Other works learn topological maps with longer temporal dependen-
cies [51] or pre-training with embodied agents [52]. Also, fine-grained temporal
relationships among multiple modalities are modeled [34,35].

Egocentric videos with additional modalities measuring the wearer’s behav-
ior offer unique challenges in understanding the context. Pose estimation is one
of the primary tasks of egocentric user understanding, making use of dynamic
motion signatures [31], body segmentation with motion history [32], or an in-
tersection between kinematics and dynamics [44]. Gaze has been estimated by
learning the correlation between global context and local information of visual
tokens [38]. A more recent line of research utilizes the wearer’s pose information,
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i.e., IMU sensors, for efficient action recognition [63] or translation to textual
description via contrastive pre-training [48]. While previous works make use of
unimodal models for IMU and train them with cross-modal learning objectives,
we directly incorporate the wearer’s pose with audio-visual embeddings for mul-
timodal models preserving spherical world-locked structure.
Audio-Visual Localization. Extensive research has been conducted to ex-
ploit audio-visual correspondence for localization in videos in-the-wild with self-
supervision [3,18,54,61], cross-modal clustering [25,47], parameter-efficient adap-
tation [41], and pixel-level correspondence learning [72, 80, 81], to list a few.
Audio-visual speaker detection is another major task in identifying the coher-
ence between the two modalities under multi-speaker scenarios [1,36,57,64,68].
Other recent works on audio-visual localization exploit a richer set of modal-
ities to enhance localization capabilities, like question-answer grounding [79],
language-guide separation [62], cross-view consistency of source directions [9],
homography [26], and audio-visual saliency [73].

Conversations in egocentric videos are often more complex than in conven-
tional videos due to noisy environments and unconstrained multi-speaker interac-
tions. Jiang et al. [33] combine audio-only and audio-visual networks to perform
spherical and inner field-of-view active speaker localization. Ryan et al. [58] refine
this localization capability by only detecting the attended conversation partner,
while Jia et al. [29] further propose to predict the complete ego-exo conversa-
tional graph from egocentric video. Closest to our work is [50], where self-motion
behaviors are used as a self-supervised learning objective. Unlike SWL, the self-
supervisory signal cannot solely offset the challenges of self-motion.
Spherical Scene Representation. There has been a surge of interest in rep-
resenting spherical data, from modeling 360◦ videos [39, 60] to the Earth’s cli-
mate [49]. Omnidirectional videos are generally projected into multiple normal
field-of-view images to mitigate distortion and discontinuity [39, 60]. On the
other hand, some prior works propose invariant or equivariant architectures on
a sphere [11, 16, 27], discretization with polyhedral approximation [15], or data
structures like the spherical binoctree [28] and balanced spherical grid [10] for
more faithful representations of the spherical scene. Other works focus on the
transferability of convolutional networks [59] or transformers [77] from the nor-
mal image domain to the 360◦ domain. However, egocentric videos are planar
and not spherical by nature, making it less practical to adopt their spherical
architectures for learning. Instead, our method interprets egocentric videos on
a world-locked sphere while preserving their original format, without requiring
additional expensive mechanisms like the Spatial Transformer [27] to incorporate
the spherical nature of egocentric observations.

3 Spherical World-Locking

In conventional head-locked frameworks, egocentric videos are provided as-is,
and the model must learn the complex nature of self-motion from end to end.
In contrast, we propose Spherical World-Locking (SWL) to represent videos on
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Fig. 3: Comparison of explicit and implicit spherical world-locking. While explicit SWL
maps the original inputs to the spherical reference frame, implicit SWL retains the
original inputs to process position ({pi}) and semantic information ({xi}) separately.

a world-locked sphere around the wearer’s head, serving as an effective means
to model self-motion in egocentric videos. Since these audio-visual data are not
spherical in nature, we first need to establish the connection between the world-
locked sphere and audio-visual egocentric streams. We use multisensory ego-
centric inputs comprising a video frame V (3 × Hv × Wv), the corresponding
multichannel audio spectrogram A (Ca×Ha×Wa), and behaviors B as 3D unit
vectors (Nb × 3) if available. We consider three different directional behaviors of
the wearer, i.e., eye gaze, head orientation, and motion trajectory.

As visualized in Fig. 3, we formulate two different SWL methods that can
equivalently represent the world-locked sphere, where each has its distinct advan-
tages. Explicit spherical world-locking (§3.1) maps the original video to a 360◦

panorama, i.e., fEX : V 7→ V ′, where V ′ (3 ×Hp ×Wp) is a panoramic image.
Whereas in implicit spherical world-locking (§3.2), we keep the original inputs
and construct the mapping from patches (for audio-visual inputs) or vectors (for
other inputs) to tuples of semantic and position embeddings that encode the
corresponding self-motion.

3.1 Explicit Spherical World-Locking

We first outline the procedure of placing egocentric videos on a world-locked
sphere. Among the three multisensory inputs, behaviors with direction B can be
trivially placed on a sphere with scalar multiplication. However, assigning a pre-
cise direction to audio inputs A is difficult. In fact, this is often the ground truth
the model aims to predict. Instead, we pair each multichannel audio segment
with the readily available head pose information, e.g ., IMUs. Since the wearer’s
pose determines the microphone array’s orientation, the model can directly con-
sider self-motion instead of capturing subtle signals about self-motion in audio
during training. These pairs can further be utilized to explicitly synthesize the
spatial audio locked to a specific direction if necessary [2, 55].
Spherical Projection. Egocentric field-of-view videos can be visually projected
onto a sphere. This is analogous to a partially observable 360◦ panorama where
the observable region changes with respect to self-motion. An equiangular map-
ping from the ij-th pixel in V to the XY -th pixel in V ′ can be computed as fol-
lows, given horizontal and vertical angular fields-of-view of θHF and θVF, where
q ∈ R4 is the current head pose provided in quaternions, gij ∈ R4 is the spherical
world-locked position of ij-th pixel in pure quaternions, and R is the radius of
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a world-locked sphere such that (HP ,Wp) = (πR, 2πR):

g′ij = (0, tan(θHF × (j/Wv − 0.5)), tan(θVF × (i/Hv − 0.5)), 1), (1)

gij = (0, gxij , g
y
ij , g

z
ij) = q(g′ij/

∥∥g′ij∥∥2)q−1, (2)

(X,Y ) = (R× atan2(gzij ,
√

(gxij)
2 + (gyij)

2), R× (atan2(gyij , g
x
ij) + π)). (3)

Although complete pose information with rotation and translation could be
combined to further improve the spatial consistency in Fig. 3-(a), we only con-
sider rotation in light of three observations: (i) it is more efficient and straightfor-
ward to integrate in our model due to the unit quaternion assumption (Eq. (7)),
(ii) rotation suffices for common seated activities like conversations, and (iii) the
influence of translation becomes negligible within a certain length of time, where
we use less than one second in all experiments.

3.2 Implicit Spherical World-Locking

While explicit spherical world-locking can be compelling in terms of interaction
and visualization, it is less practical to use this representation for model train-
ing. For example, an irregular array access in Eq. (3) incurs nontrivial overhead.
Distorted images as in Fig. 3-(a) also introduce another challenge of distortion-
aware methods discussed in §2. To circumvent these issues, we suggest an implicit
way to construct a spherical world-locked representation of multisensory inputs.
As depicted in Fig. 3-(b), we leave all inputs intact and pair them with coordi-
nates on a world-locked sphere to maintain semantic and position embeddings
of multisensory inputs separately.
Multi-CLS Embeddings. Classification tokens are commonly employed for
capturing the global context from a set of input embeddings. Since our goal
is to localize signals spatially, we exploit multiple classification tokens {ci}Nc

i=1

parametrized with a point pi = (xi, yi, zi) on a world-locked sphere to capture se-
mantic information around pi, where Wc ∈ Rd×3,bc ∈ Rd are learnable weights:

ci = Wcpi + bc. (4)

Some recent works use multiple CLS tokens for capturing class-specific in-
formation in semantic segmentation [74] or ensembling in language understand-
ing [8]. The key difference in our work is that we deploy multiple CLS tokens to
predict spatially localized signals on a sphere for flexible decoding (§4.2).
Semantic Input Embeddings. Since implicit spherical world-locking natu-
rally separates position embeddings on a world-locked sphere from semantic
embeddings, we can use off-the-shelf feature encoders for processing unmodified
multisensory inputs. To obtain visual embeddings {vi}Nv

i=1, we use ResNet-18 [24]
or 3-layer ConvNet to process frames or facial images. For audio embeddings
{ai}Na

i=1, we apply linear projection per patch as in [14,21,78], where we use ver-
tical patches of the spectrogram, as shown in Fig. 3-(b), for the audio semantic
embeddings to accurately align with the wearer’s head pose. Finally, similar to
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Fig. 4: Our MuST model architecture. M- indicates modality-wise operations.

Eq. (4), we assign a learnable embedding for behavioral input {bi}Nb
i=1, which is

also parametrized with a point on a unit sphere.
Position Input Embeddings. For each semantic input embedding, we assign
a 3D point on a sphere so that all of the multisensory input embeddings are
implicitly located on a world-locked sphere, as illustrated in Fig. 3-(b). For clas-
sification tokens and behavioral inputs, we use the coordinates identical to the
ones used in semantic inputs. For audio and visual inputs, we assign the head
orientation q in Eq. (2) and spherical world-locked location of each visual token,
respectively. In short, our multisensory input embeddings are summarized as

{xi}Ni=1 = {x0
i }Ni=1 = {c1, ..., cNc

, a1, ..., aNa
, v1, ..., vNv

, b1, ..., bNb
}, (5)

{pi}Ni=1 = {(x1, y1, z1), ..., (xN , yN , zN )}. (6)

4 Multisensory Spherical World-Locked Transformer

We propose the Multisensory Spherical World-Locked Transformer (MuST) to
perform audio-visual localization tasks in egocentric videos, building upon the
concept of implicit spherical world-locking and multimodal transformers. Using
multisensory input embeddings in Eq. (5–6), we exploit MuST encoder blocks
that focus on multisensory interactions on a world-locked sphere (§4.1), followed
by a lightweight decoder for tackling various localization tasks flexibly (§4.2).

4.1 MuST Encoder

Transformers [69] can effectively integrate multisensory embeddings and their
corresponding positions, forming an ideal combination of position and semantic
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embeddings from implicit spherical world-locking. Our MuST block is built upon
the general Transformer block [14], with two key differences in self-attention
to incorporate multiple senses on a world-locked sphere: spatial similarity and
modality-wise operations.
Spatial Similarity on Sphere. Since each multisensory embedding retains a
position on a world-locked sphere, we can model the pairwise interaction between
different modalities in the form of rotation quaternions. This spatial similarity
matrix at l-th layer Pl ∈ RN×N is integrated into each (semantic) query-key
matrix in the multi-head self-attention, promoting spatial relations among em-
beddings. The rotation from a 3D unit vector pi to pj is computed as

Pl
ij = Linear(GELU(Linear([1 + pi · pj , pi × pj ]))), (7)

where (1 + pi · pj , pi × pj) is a rotation quaternion and the output of MLP is
scalar, i.e., R4 → R. Since the pairwise rotation remains identical for all layers,
rotation quaternions are computed once for each input and used for all layers.
Modality-wise Operations. Since our goal is to encode a heterogeneous set
of modalities in a single encoder, it is paramount to harmonize them during
training. We promote cross-modal interactions in each encoder block by apply-
ing layer normalization [4] and q, k, v projection in multi-head attention in a
modality-specific manner, i.e., M-LN and M-Attn in Table 1-(b). By normal-
izing the embeddings with modality-wise means and variances while retaining
the modality-specific mapping before dot-product attention in each layer, i.e.
using different linear projection per modality, the model notably promotes an
interplay among different modalities than its unimodal counterparts. Note that
not all modality-specific modules positively influence the model training, which
is further discussed in §5.1. In short, multi-head self-attention for each head is

x̄l
i = Linear(0.5× (σ(QlKlT /

√
d) + σ(Pl))V l), (8)

xl+1
i = xl

i + x̄l
i + Linear(GELU(Linear(x̄l

i))), (9)

where σ denotes softmax and Ql,Kl, V l are queries, keys, and values projected
with modality-wise linear layers (i.e., M-Linear in Fig. 4), respectively.

4.2 MuST Decoder

Using multiple CLS tokens obtained from the last encoder layer, i.e., {cLi }
Nc
i=1,

we can employ different decoding strategies depending on the target task.
Sparse Decoding. For each token cLi , we apply pointwise decoding with an
MLP to obtain score yi that corresponds to our model’s prediction on point pi:

yi = Linear(GELU(Linear(cLi ))). (10)

Unless mentioned otherwise, we use a sparse grid of 5×10 CLS tokens for training
the model, i.e., each token covers around 2% of the output region. It is possible
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to make the training more efficient by selecting a subset of classification tokens
for the model like a set of pre-detected regions of interest or faces (e.g ., MuST
with Sparse Point in Table 1-(d)). This reduces the number of CLS tokens by
an order of magnitude smaller, which is far more efficient than the full grid.
Dense Decoding. From a grid of CLS tokens, we can utilize a light deconvo-
lutional network illustrated in Fig. 4-(b)-(ii) to obtain a dense output map y of
the desired resolution in either a field of view (Hv×Wv) or a spherical panorama
(Hp × Wp). One special case of dense decoding is horizontal decoding (Fig. 4-
(b)-(iii)), which is applicable to spherical source localization. Since the spherical
world-locking compensates self-motion in the data stream, our scene representa-
tion is gravity-aligned. So, for some tasks, it is possible to discard tokens except
for the ones around the equator line without notable performance degradation.
For example, there is only a marginal performance gap in our model reported
in Table 2, i.e., around 1◦, in spite of reducing the number of CLS tokens by a
factor of five. In this case, 1D operations instead of 2D can be used for decod-
ing and converted to 2D by permuting channel dimension to vertical dimension,
making both encoding and decoding more efficient.
Learning Objective and Details. We adapt the binary cross entropy loss for
training the model, i.e., 1

Nc

∑
H(yi, ŷi) for sparse decoding and 1

H×W

∑
H(y, ŷ)

for dense decoding where H denotes cross entropy. We use the Adam opti-
mizer [37] with a learning rate of 1e-4 without scheduling. The model is trained
end-to-end for 10 epochs until convergence, where we closely follow the hyper-
parameters used in a smaller variant of Vision Transformer (DeIT-S [67]), which
has slightly fewer parameters than ResNet-50 [24].

5 Experiments

For a comprehensive demonstration of the effectiveness of our framework, we
evaluate MuST with multiple benchmarks covering diverse egocentric videos.
We first focus on egocentric audio-visual active speaker localization (§5.1). In
addition, we report the performance of auditory spherical source localization
(§5.2) to evaluate the model’s capability of localizing directional signals on a
sphere without visual shortcuts. Finally, we generalize our framework to more
diverse everyday activities by developing a new suite of tasks on egocentric be-
havior anticipation (§5.3), which jointly predicts the direction of wearer’s future
behaviors, i.e., gaze, head orientation, and trajectory, from multisensory inputs.

5.1 Audio-Visual Active Speaker Localization

Dataset. EasyCom [13] is a public dataset of egocentric conversations for aug-
mented reality applications. It consists of 0.38M video frames and their corre-
sponding sensory inputs like pose and multichannel audio. Due to the highly
noisy nature of audio streams from the microphone array and frequent self-
motion, the dataset covers various challenges in egocentric multi-speaker con-
versations such as speech enhancement. We focus on active speaker localization
as one of the most common egocentric audio-visual localization tasks.
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Table 1: Performance of active speaker localization on the EasyCom dataset [13].

(a) Methods mAP↑

DOA [66] 52.62
DPT [56] 61.66
MRC [33] 64.24
BAVNet [72] 60.75
TalkNet [64] 69.13
BPNface [50] 75.22
AVLN [50] 85.11
MAVASLSpec [33] 85.49
MAVASLC+E [33] 86.32
MuST 89.88
Oracle 91.03

(b) Encoder mAP↑

MuSTw/o pose 87.76
MuSTw/o rotation 88.83
MuSTw/o M-ops 88.53
MuSTM-LN 89.67
MuSTM-LN,M-MLP 89.16
MuSTM-LN,M-Attn 89.88

(d) Decoder mAP↑

Sparse Point 88.95
Dense 89.58
Sparse Grid 89.88

(c) Modality mAP↑

Bpose 47.95
+Amono 68.57
+V 68.78
+Amono+V 73.47
+Amulti 89.50
+Amulti+V 89.88

(e) Temporal mAP↑

100ms 82.96
200ms 87.78
300ms 89.88

Experiment Settings. We closely follow prior works’ experiment settings [33]
like splits and metrics for a fair comparison. We mainly report the mean average
precision (mAP), which captures both spatial and temporal localization of speech
activity inside the camera’s field-of-view. The mAP scores of all models are
computed by pooling the maximum logit value within the corresponding head
bounding boxes. We also devise an Oracle comparison as a potential upper bound
on the egocentric models’ performance using close microphone recordings from
the other participants, which are unavailable from the wearer’s perspective, to
detect speech activity from cleaner near-field audio.

We compare our full model and its variants with a number of competitive
baselines. We report the performance of a state-of-the-art audio signal processing
method [66], visually oriented methods like mouth region classifier [33] and Dense
Prediction Transformer [56], and competitive localization frameworks based on
LSTM [72] or Transformer [64]. We also report more recent frameworks on ego-
centric audio-visual localization [33, 50] for thorough comparison. Finally, abla-
tion studies on encoder-decoder design, input modalities, and temporal window
are provided for a comprehensive analysis of MuST.
Comparison with Prior Arts. In Table 1-(a), our proposed framework out-
performs previous methods by a large margin, increasing the accuracy by 3.6%p.
This gap becomes wider if the same modalities (faces and spectrograms) are used
as inputs, i.e., 4.4%p. The performance of our model is comparable with the Or-
acle’s despite the usage of noisy microphone arrays (-1.2%p). This tight upper
bound is likely due to the coarse-grained nature of annotations in EasyCom,
i.e., active speech labels are based on phrases instead of phonemes, whereas the
model’s prediction is evaluated every 50ms. Such a gap makes it hard for the
model to differentiate pauses of active speakers from non-speakers, which is in
line with performance degradation for shorter temporal windows in Table 1-(e).
Ablation Studies. Table 1-(b) shows the influence of different encoder com-
ponents on the performance. Components based on spherical world-locking, like
position information and rotation, significantly contribute to the full model’s per-
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w/o pose

𝒜mono

Fig. 5: Qualitative examples of egocentric active speaker localization on EasyCom [13].
The red/blue boxes indicate active/non-active speakers, and the red heatmap indicates
model prediction. MuST can make correct predictions for scenes with gravity misalign-
ment (col. 1), motion blur (col. 2, 4), and multi-speakers (col. 3, 5).

formance, (+2.1%p). Also, MuST without modality-specific operations (MuST
w/o M-ops) displays even worse performance than the model without visual infor-
mation in Table 1-(c). Since not all modality-specific operations are beneficial to
performance, it is essential to reconcile different modalities properly. Combining
mono audio with visual input introduces a remarkable +4.9 mAP gain, even out-
performing a large-scale pretrained prior art for single-channel localization [64].
Still, the largest performance boost comes from the multichannel microphone
array, which can capture rich spatial signals with multiple microphones.
Qualitative Results. Fig. 5 compares our full model with selected variants of
MuST, demonstrating correct active speaker localization in challenging scenarios
with multiple active speakers and diverse self-motion. The sparse point decoder,
which assigns a CLS token to each detected face, is also precise except for the
last column with variable head size. Without pose information or multichannel
audio, performance falls short due to insufficient spatial reasoning capability.

5.2 Auditory Spherical Source Localization

Dataset. RLR-CHAT [76] is a large-scale dataset of egocentric multisensory
streams under a variety of configurations, covering an order of magnitude more
recordings than in EasyCom [13]. RLR-CHAT encompasses more realistic scenar-
ios like scene layouts, overlapping speech in free-form conversations, and varying
degrees of background noise. Due to increased diversity and lower frame rates
(i.e., 200ms), it is paramount for the model to perform precise localization as
well as disambiguate multiple speakers at the same time. We particularly focus
on a more challenging setup of multichannel auditory source localization that
lacks visual cues, which could prevent shortcuts like face regions.
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Table 2: Comparison of auditory spheri-
cal source localization errors on the RLR-
CHAT dataset [76].

MAEg→p↓ MAEp→g↓
EchoNet [17] 66.99 65.29
MAVASL-A [33] 62.25 60.70
SAM [78] 46.95 44.90
MuSTw/o pose 29.33 28.55
MuST 15.23 12.67

■ R=1

■ R=3

■ R=5

68.89

42.50

39.22

68.74

42.45

39.18

68.48

41.85

38.85
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mAP .0 20 40 60 80

Fig. 6: Spherical mAP with varying an-
gular precision on RLR-CHAT [76].

Experiment Settings. Following prior works [33], we report the mean angular
error (MAE) from prediction to ground truth and vice versa, reflecting how far
the model’s prediction deviates from the ground truth source direction on a
sphere. In order to consider the differences among models’ output distributions,
we select a fixed number of peaks in predictions with non-max suppression, i.e.,
the number of active speakers in a 200ms timeframe.

We report the performance of several state-of-the-art models on spatial rea-
soning with audio using identical audio features (multichannel STFT) and ground
truth for a fair comparison. We use the audio network of MAVASL [33], EchoNet
[17] for spatial reasoning with echolocation, and the SAM audio network [78] for
dense indoor prediction with sound. We also provide spherical mAP with varying
angular resolutions to get a better grasp of spatial precision. Please refer to [45]
for details regarding the microphone array configuration used in experiments.
Performance Analysis. Table 2 summarizes the performance of different au-
ditory spherical source localization methods. Our framework achieves superior
performance in both MAE metrics with or without pose, and the usage of pose
information substantially improves the audio-based localization performance.
Fig. 6 illustrates the mAP scores on a sphere with varying angular precision,
where radius values of 1, 3, and 5 correspond to detection thresholds of 2.25◦,
6.75◦, and 11.25◦, respectively. Despite generally lower performance due to higher
complexity, angular precision variations do not have a notable influence on mAP
scores, implying the precise localization ability of correct predictions.

Fig. 7 depicts qualitative examples of audio-only localization performance,
where all models efficiently bypass a visually challenging scenario of a hair oc-
clusion in the first column. In addition, our framework displays better source
detection and localization capability than the competitive baseline [78].

5.3 Egocentric Behavior Anticipation

Dataset. We extend MuST to perform multisensory localization in more di-
verse egocentric daily activities to examine the generalizability of our proposed
framework. The Aria Everyday Activities (AEA) Dataset [45] covers diverse ego-
centric videos of daily activities like cooking or chatting for scene comprehension,
comprising 143 recordings from five different environments. Understanding and
anticipating the wearer’s behaviors, i.e., eye gaze, head orientation, and motion
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SAM

MuST

GT

Fig. 7: Qualitative examples of auditory spherical source localization on RLR-
CHAT [76]. Our model displays precise detection as well as localization capability
over the prior art [78]. Note that visual frames are not used in all models.

Table 3: Comparison of behavior anticipation errors on the AEA Dataset [45].

Gaze Orientation Trajectory
MAE↓ T300ms T500ms T700ms T300ms T500ms T700ms T300ms T500ms T700ms

MultitaskGP [19] 11.42 15.59 18.40 4.70 9.28 12.27 13.75 17.86 20.02
MuSTAV 12.26 14.48 16.59 5.68 8.28 10.75 92.38 92.46 92.71
MuSTB 8.78 11.98 14.65 5.02 7.65 10.18 9.77 12.04 13.48
MuSTVB 8.92 11.96 14.57 4.82 7.40 9.91 10.05 12.36 13.90
MuSTAVB 9.17 12.15 14.75 4.78 7.36 9.90 9.96 12.38 13.95
MuSTAVB-singletask 9.19 12.35 15.02 5.02 7.74 10.28 10.08 12.53 14.03

trajectory, in daily activities can be crucial in egocentric user understanding and
applicable for assistive systems in augmented or mixed reality scenarios. Since
there is no public benchmark that jointly anticipates a set of cohesive egocen-
tric behaviors with multisensory observations to the best of our knowledge, we
organize a suite of tasks for holistic egocentric behavior anticipation with AEA.
Experiment Setting. We tackle three egocentric behavioral targets on the
world-locked sphere: eye gaze, head orientation, and motion trajectory. Consid-
ering the typical behavioral reaction time of humans, our goal is to anticipate
future behaviors in 300/500/700ms given the current audio-visual observations
and previous behavioral contexts of 700ms. To evaluate localization performance,
we use Mean Angular Errors (MAE) of behaviors at different timestamps by
comparing the argmax coordinate of the model’s prediction with ground truth
behaviors, similar to §5.2. We report the average performance from a five-fold
cross-validation using five different scenes in the dataset. As the problem of ego-
centric behavior anticipation in this dataset has not been addressed previously,
we report the performance of a competitive baseline of Multitask Gaussian Pro-
cess [19] as well as selected variants of our model for an extensive analysis.
Performance Analysis. As visualized in Fig. 8, egocentric behavior is quite
complex and often challenging to predict. Still, our model achieves consistent
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Ours

GT

Fig. 8: Qualitative examples of egocentric behavior anticipation on the AEA
Dataset [45] where gaze, orientation, and trajectory are color coded. Cross/circle sym-
bols denote previous/anticipated behaviors. Our model reasonably anticipates future
behaviors in common scenarios like long-term fixation and human-object interaction.

performance improvements over the baseline except for short-term head orien-
tation anticipation, reducing the angular error by 20.5%, 12.8%, and 29.5% for
gaze, orientation, and trajectory respectively. It is noteworthy that our audio-
visual model without previous gaze context (MuSTAV) displays compelling per-
formance in gaze anticipation task but is poor at predicting future head tra-
jectories. Such tendency suggests that, unlike exocentric behaviors, egocentric
behaviors like gaze can be anticipated from current audio-visual observations to
a meaningful extent without previous behavioral context. Different sets of input
modalities are often more proficient for a specific task than others. For example,
audio inputs are closely tied with previous pose information, achieving better
performance in anticipating orientation than others. Lastly, our model trained to
jointly anticipate all behaviors outperforms single-task counterparts in all tasks,
meaning that MuST is properly leveraging coherence across different behavioral
contexts.

6 Conclusion

We presented the Spherical World-Locking, a new framework for audio-visual lo-
calization in egocentric videos that leverages the wearer’s pose information to off-
set challenges in self-motion. Powered by implicit SWL, our MuST architecture
facilitates cross-modal interaction on a world-locked sphere by means of rotation
quaternions and modality-wise operations, enabling learning better multisensory
scene representation. It also provides fine-grained and flexible decoding for local-
ization with multiple spatial classification tokens. We have conducted extensive
experiments on three different multisensory egocentric localization benchmarks.
Our results demonstrate significant improvement both quantitatively and qual-
itatively over prior arts. As future work, we plan to extend our framework to
exploit other modalities like optical flow as a proxy of pose information, which
is not always available, and scale to more large-scale egocentric video datasets.
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