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Abstract

Sound can convey significant information for spatial rea-
soning in our daily lives. To endow deep networks with such
ability, we address the challenge of dense indoor prediction
with sound in both 2D and 3D via cross-modal knowledge
distillation. In this work, we propose a Spatial Alignment
via Matching (SAM) distillation framework that elicits lo-
cal correspondence between the two modalities in vision-
to-audio knowledge transfer. SAM integrates audio fea-
tures with visually coherent learnable spatial embeddings
to resolve inconsistencies in multiple layers of a student
model. Our approach does not rely on a specific input
representation, allowing for flexibility in the input shapes
or dimensions without performance degradation. With a
newly curated benchmark named Dense Auditory Predic-
tion of Surroundings (DAPS), we are the first to tackle
dense indoor prediction of omnidirectional surroundings in
both 2D and 3D with audio observations. Specifically, for
audio-based depth estimation, semantic segmentation, and
challenging 3D scene reconstruction, the proposed distil-
lation framework consistently achieves state-of-the-art per-
formance across various metrics and backbone architec-
tures.

1. Introduction

Humans can get a good grasp of various information
about surroundings with hearing without seeing, like the
size of a room or the location of an active alarm. A long line
of research has analyzed such intriguing abilities of humans
based on interaural differences [1, 2] or brain activation with
respect to spatially aligned audio-visual inputs [3, 4], to list
a few. Accordingly, there is an emerging interest in teaching
neural network models for spatial reasoning without seeing.
Such models that spatially perceive the surroundings from
sound can be utilized in various environments that are crit-
ical for privacy preservation or visually ill-posed (e.g., low
illumination or occlusion) [5, 6, 7, 8].
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Figure 1: key idea of our approach. (a) For vision-to-
audio cross-modal distillation, instead of direct distillation
between geometrically inconsistent modalities, we spatially
align the latent feature maps of students with those of teach-
ers. (b) Using auditory input only, we perform three dense
predictions of surroundings: depth estimation, semantic
segmentation, and 3D scene reconstruction.

Since predicting visual properties directly from audio is
challenging, cross-modal knowledge distillation [9] is of-
ten utilized, i.e., teaching audio models with the guidance
of visual models. Visual models can make precise predic-
tions about the image of the surroundings, like the location
of objects or the depth of a scene. Thus, using visual mod-
els as the teacher, audio models can learn how to predict
visual properties in a scene from sound inputs. This cross-
modal knowledge distillation has been successfully applied



to make audio models predict sparse attributes, e.g., vehicle
tracking [5] or indoor navigation [7]. However, it remains
challenging to make dense visual predictions about the sur-
roundings from audio.

One of the core challenges behind the dense prediction
with audio is to identify fine-grained attributions of the out-
put. In other words, humans can intuitively make sense of
the room layout by hearing, but have difficulty in explaining
which bandwidths or timeframes are responsible for their
perception. Unlike distilling an RGB image teacher for a
thermal image student that is geometrically consistent up
to the pixel level, there is no obvious one-to-one alignment
between image and audio. Hence, it is not feasible to de-
termine which part of the audio spectrogram corresponds to
which region of the surrounding. While using multiple in-
termediate features of a teacher model as a guide can still be
beneficial [5, 8], it may not be possible to solve the underly-
ing local correspondence problem between the two hetero-
geneous modalities.

In this work, we are the first to address the dense indoor
prediction of omnidirectional surroundings in both 2D and
3D with audio observations. To resolve the inconsistency
problem, we propose a novel Spatial Alignment via Match-
ing (SAM) distillation framework. SAM matches local cor-
respondences between the two heterogeneous features by
making use of learnable spatial embeddings in several lay-
ers of the audio student model, combined with loose triplet-
based learning objectives. We retain a set of learnable spa-
tial embeddings to capture spatially varying information of
each layer, which are pooled and integrated with initial au-
dio features for alignment. This allows us to resolve incon-
sistencies even when the shape of the audio input does not
match that of the desired output, making it trivially extend-
able to a challenging scenario like audio-to-3D distillation.

To comprehensively evaluate the performance of our
method, we curate a new benchmark for audio-based dense
prediction of surroundings based on Matterport3D [10]
and SoundSpaces [7]. We collect 15.8K indoor scene
multimodal observations with task-specific annotations for
audio-based depth estimation, semantic segmentation, and
3D scene reconstruction. In dense auditory prediction tasks
spanning from 2D to 3D, our framework consistently im-
proves the performance by a wide margin, which is vali-
dated on multiple architectures like U-Net [11], DPT [12],
and ConvONet [13]. Also, qualitative results demonstrate
that our approach can precisely predict the structure of the
indoor environment with hearing without seeing.

2. Related Works
Indoor Multimodal Scene Analysis. Extensive re-

search has been conducted to understand indoor surround-
ings for given various inputs. Using monocular images as
input, many visual scene understanding tasks like depth es-

timation, semantic segmentation, and surface normal esti-
mation have been studied [14, 10, 15]. In addition, 3D-
based methods for semantic segmentation, object recog-
nition, and floorplan reconstruction have been proposed
with voxel or mesh-based representations [10, 15, 16, 17].
When performing such tasks, combining different modali-
ties as inputs is proven to be effective, such as RGB with
depth information for semantic segmentation [18] or vox-
els with point clouds for 3D segmentation [19]. Recently,
2D vision-language models are successfully employed for
open-vocabulary 3D scene understanding [20, 21].

There has been a surge of interest in combining audio
and visual signals to tackle visual or acoustic tasks in in-
door environments. Some prior works generate binaural
audio [22] or scene-aware auditory responses [23, 24] by
utilizing visual surroundings as a reference. Binaural au-
dio is simulated from a 3D scene for audio-visual embodied
navigation [7, 25]. Audio signals can help improve perfor-
mances in visual tasks like floorplan reconstruction [26] and
depth estimation of normal field-of-views [27, 28].

Cross-modal Knowledge Distillation. Knowledge dis-
tillation [29] aims at transferring knowledge from a teacher
model to a student model by minimizing the distances be-
tween the two logit distributions. Cross-modal distilla-
tion [9] enhances this transfer by ensuring that the inter-
mediate features of the student model align with those of
the teacher model when their input modalities are different.
Distillation between different modalities can improve the
robustness of prediction under diverse conditions, such as
utilizing depth sensors in student models by distilling ob-
ject detection, action recognition, or semantic segmentation
models [30, 31, 32]. Likewise, Vobecky et al. [33] leverage
LiDAR and image inputs to generate spatially consistent ob-
ject proposals for semantic segmentation.

Cross-modal distillation can be applied to the scenarios
where no explicit correspondence exists between the two
modalities. Zhao et al. [34] use a student model with radio
signals for human pose estimation via distillation. Roheda
et al. [35] conditionally utilize noisy observations of avail-
able sensors like seismic sensors to enhance image qual-
ity. Also, audio-only and image-only teachers can teach a
video-only student model via shared latent embedding [36]
or long short-term memory networks [37] for better clas-
sification. Other examples include knowledge transfer of
speech models for visual lip reading [38, 39] or visual cap-
tioning models for audio captioning [40].

Spatial Reasoning with Sound. Sound contains valu-
able information for spatial reasoning. Embodied agents
can navigate indoor environments by relying solely on au-
ditory input [7], and their exploration behavior can be
promoted by referring to auditory feedback [41]. Other
prior works focus on the spatial localization of audio
sources [42], 3D face synthesis from speech [43], and depth



estimation on a robot [44, 45, 46]. Sound-only models can
benefit from the cross-modal distillation of visual teacher
models for fine-grained spatial understanding. Vision-to-
audio knowledge distillation has shown compelling perfor-
mance in vehicle localization [5, 8], obstacle detection [47],
and collision probability estimation [48]. However, prior
works are limited to the sparse prediction of the surrounding
environment (e.g., bounding boxes), while the dense predic-
tion remains challenging.

Closest to our approach is Binaural SoundNet [6, 49], as
it improves outdoor dense prediction performance through
the cross-modal distillation of multiple tasks. However,
our work has three significant differences. First, we per-
form indoor semantic segmentation and 3D scene recon-
struction from audio as new dense prediction tasks. Second,
SoundNet does not consider feature-level alignment, while
our method hierarchically leverages spatial alignment via
matching for fine-grained vision-to-audio distillation. Fi-
nally, instead of designing a new architecture for model-
ing audio inputs [5, 49] or forcing specific input representa-
tions [6, 8], we take the audio input as is and adapt off-the-
shelf vision models for audio-based dense prediction.

3. Approach
Our goal is to predict various dense properties of in-

door surroundings without visual input by leveraging bin-
aural audios, e.g., depth, semantic labels, and 3D struc-
tures. To this end, we present a framework for vision-to-
audio knowledge distillation that does not rely on specific
architecture and entails the alignment of heterogeneous fea-
tures, as shown in Fig. 2. Given a pre-trained visual teacher,
we aim to train an audio student model using paired audio-
visual observations as training data.

We start by reviewing the basics of vision-to-audio
knowledge distillation and the challenges in adapting such
methods for dense auditory prediction of surroundings
(§3.1). Next, we explain the proposed spatial alignment
via matching distillation (§3.2). Finally, we outline train-
ing and inference procedures shared among different tasks
(§3.3). Commonly used variables are defined as follows.

ain, vin Audio, visual input (RW ′×H′×2,RW×H×3)
aout, vout Audio, visual prediction output (RW×H )
ai, vi Features at layer i (RAi×C , RVi×C)

ai(j), vi(j) j-th feature at layer i (RC)
Ai, Vi Feature resolution (wa

i × ha
i , w

v
i × hv

i )
pki k-th learnable spatial embedding at layer i

(RVi×C , 0 ≤ k < K)
p̄i Aligned feature at layer i (RVi×C)

3.1. Vision-to-Audio Knowledge Distillation

Cross-modal distillation from a visual teacher model to
an audio model has two significant advantages: (i) training
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Figure 2: Overview of our spatial alignment via matching
distillation framework.

without labeled data by turning to the teacher model’s pre-
diction (pseudo-GT) and (ii) teaching fine-grained knowl-
edge to the student model via feature distillation. In general,
cross-modal distillation for spatial reasoning leverages both
pseudo-GT and feature outputs from one or more layers for
fine-grained knowledge transfer [9]:

LcrossKD = d(vout, aout) + λ
∑
i

∑
j

d(vi(j), ai(j)), (1)

where d(·, ·) is a distance function. This objective is well-
defined for two modalities that are consistent up to pixel
level (e.g., distilling an RGB teacher to a depth student). On
the other hand, it is less plausible to use the same method
for vision-to-audio knowledge distillation.

The main difficulty that hinders knowledge transfer is
the semantic and shape inconsistencies of the two heteroge-
neous modalities. First, the semantics of audio and visual
features are not coherent with each other. For example, in
the second term of Eq. (1), the j-th feature of an audio-only
model at layer i may not always match the corresponding
feature of a vision-only model. This lack of correspon-
dence between the features of the two modalities makes di-
rect distillation depicted in Fig. 1-(a) less effective, which is



empirically in line with previous research on vehicle track-
ing [5, 8]. Second, the shape of audio input is usually not
identical to visual input, and simple interpolation of an au-
dio input often deteriorates the performance. Moreover, it
is even more challenging when the dimensions of the two
modalities do not match, e.g., predicting 3D surroundings
from audio. Hence, it is necessary to establish a method
that can effectively align with visual features regardless of
specific input shapes other than naı̈ve resizing or cropping.

3.2. Spatial Alignment via Matching

To resolve the challenges mentioned above, we intro-
duce a novel method for cross-modal knowledge distilla-
tion of two heterogeneous modalities without semantic and
shape consistency. We coin this method Spatial Alignment
via Matching (SAM), which comprises three major compo-
nents: input representation, learnable spatial embeddings,
and feature refinement. To obtain the spatially aligned fea-
tures for the i-th layer of the audio encoder, we can allocate
a SAM block that accounts for both feature alignment and
shape discrepancy, i.e., SAMi : RAi×C → RVi×C .

Input Representation. Using Short-Term Fourier
Transform (STFT) spectrograms of raw binaural audios, we
can exploit any 2D deep networks as commonly done in au-
dio representation learning [50, 51]. However, unlike pre-
vious works that rely on pseudo-GT [6, 49] or require iden-
tical shapes for feature-level distillation [5, 8], our method
can be trivially applied where (wa

i , h
a
i ) ̸= (wv

i , h
v
i ).

In addition, SAM can handle more challenging scenar-
ios like 1D encoders, i.e., wa

i = 1 or ha
i = 1, by regarding

the input spectrogram as a set of 1D patches. Decompos-
ing the spectrogram into time bands (W ′ × 1) or frequency
bands (1×H ′) can effectively reduce the feature shape and
replace 2D with 1D operations. This allows for more effi-
cient encoder implementation in terms of memory and time,
making it applicable to memory-intensive scenarios.

Learnable Spatial Embeddings. It is essential to retain
features that are spatially well-aligned with dense predic-
tion output, especially when the input is not aligned with the
output modality. In this regard, we design learnable spatial
embeddings as a container to capture spatially varying in-
formation in paired audio-visual observations. We maintain
a set of embeddings p0i , ..., p

K−1
i identical in shape with vi-

sual features for each SAM and transform the shape of stu-
dent features before the decoder. The number of learnable
embeddings K may vary across layers, where more slots
can be assigned to reconstruct high-level features.

For K learnable embeddings, we first derive a similar-
ity matrix Ti ∈RK×Vi , which represents the proximity be-
tween provided audio feature ai and the k-th spatial embed-
ding. We compute the pairwise similarity between the j-th
audio feature and the l-th feature in a spatial embedding,
i.e., ai(j), pki (l)∈RC , and select the maximum value along

the j dimension:

Ti =

K−1

∥
k=0

T k
i =

K−1

∥
k=0

max
j

pkiWiai(j), (2)

where Wi ∈ RC×C is a linear projection and || is a con-
catenation operator. That is, higher similarity implies more
coherency between the audio features and spatial embed-
dings at each region, allowing us to obtain features that are
spatially aligned with the visual features.

By applying softmax along the K dimension of simi-
larity matrix Ti, we then obtain a pooled embedding p̂i ∈
RVi×C as a linear combination of embeddings:

p̂i =

Vi−1

∥
l=0

K−1∑
k=0

eT
k
i (l)∑

k e
Tk
i (l)

pki (l). (3)

The softmax term can be interpreted as a probability distri-
bution of selecting k-th embedding for high audio-visual
correspondence, making p̂i coherent with audio features
while maintaining the spatial structure of visual features.

Refinement with Student Features. For better coher-
ence with audio features, we refine the pooled embedding
p̂i using audio feature ai as keys and values by leveraging a
multi-head attention mechanism (MultiHead) [52]:

p̄i = MultiHead(p̂i, ai, ai) + p̂i. (4)

As a result, we obtain the aligned feature p̄i from the
SAM block at layer i. SAM can facilitate the spatial align-
ment between features at one (i.e., a bottleneck between the
encoder and decoder) or more layers. For instance, it can
be applied to the global residual connection in pyramid-like
architectures [11, 53, 54] to ensure shape consistency, as
depicted in Fig. 2–(a-b).

3.3. Training and Inference

Network Architecture. For teacher models in each task,
we follow the training procedure established in previous lit-
erature [12, 54, 13]. For simplicity, we train the teacher
models using ground truth labels in the training split, while
we also report the cross-modal distillation performance of
non-iid settings in Appendix. We use ImageNet [55] pre-
trained weights for training teacher models in 2D tasks.
Trained teacher models are only utilized during the train-
ing of a student model, with parameters fixed.

Our approach can be applied to a wide range of archi-
tectures for dense auditory prediction. We demonstrate
this by using U-Net [11] with a ResNet-50 [56] back-
bone and Dense Prediction Transformers (DPT) [12] with
a ViT-B/16 [57] backbone as representative examples of
convolutional networks and vision transformer variants, re-
spectively. We exploit Convolutional Occupancy Networks



(ConvONet) [13] as a base architecture for 3D reconstruc-
tion. Using paired audio-visual observations, student mod-
els are trained to mimic the output of the teacher model.

Learning Objective. We minimize the task-specific
distance metric between the student and teacher model’s
prediction (pseudo-GT), i.e., Lp = d(vout, aout). To fa-
cilitate the cross-modal distillation, we integrate an aux-
iliary feature loss that promotes local coherence between
ai and vi by optimizing the distance among triplets
(vi(j), ai(k), ai(k

′)):

Li
f =

1

Vi

∑
j

∑
k′∈Nk

max(0,m−vi(j)∗ai(k)+vi(j)∗ai(k′)),

(5)
where m = 0.3 is a margin, Nk is a set of negative samples
regarding ai(k), and ∗ indicates cosine similarity. Since
there are no ground truth positive pairs for local correspon-
dence, we use ai(k) = argmaxai(k) ai(k) ∗ vi(j) as a
loosely defined positive pair. For Nk, we either deem all
the other features in ai as negative or randomly select one
among adjacent features, depending on the convergence of
feature loss. In summary, our learning objective is as fol-
lows:

LOurs = Lp + λ
∑
i

Li
f , (6)

where λ is a task-specific hyperparameter to balance the
scale between the pseudo-GT loss and feature loss. We use
up to four SAM blocks for all experiments, where we set
K = 64 for the last SAM (SAM4) and reduce the number
by a factor of four. We train the student model from scratch,
and during inference, we do not use any input, feature maps,
or modules related to the visual modality; only the audio in-
put and the trained audio-only student model are utilized.
Further details are deferred to Appendix.

4. Experiments
We first discuss a new benchmark for three audio-based

dense prediction tasks of scene understanding (§4.1). We
then present the results of our approach for audio-based
depth estimation, semantic segmentation, and 3D scene re-
construction tasks (§4.2–4.4).

4.1. The DAPS Benchmark

To evaluate the 2D and 3D dense prediction performance
with audio, both the audio signal and the information re-
garding its surrounding space are required. Since none
of the existing works benchmark multifaceted aspects of
the omnidirectional surroundings as a whole, we organize
a new benchmark upon existing simulators and datasets.
We coin this benchmark Dense Auditory Prediction of Sur-
roundings (DAPS). DAPS comprises 15.8K indoor scene
observations with labels, where each sample consists of bin-
aural audio, RGB panorama, and 3D voxel triples as obser-

vation and dense labels for three different tasks, as illus-
trated in Fig. 1-(b).

SoundSpaces [7] can simulate sound in indoor environ-
ments; for example, it includes Matterport3D [10] that deals
with the material properties and layouts of a scene. Once
setting the position and orientation of the recording agent in
SoundSpaces, we obtain the recordings with respect to a set
of emitter and receiver coordinate pairs. For simplicity, we
report the results when the coordinates of an emitter and a
receiver are identical.

After sampling coordinates information, we employ the
Habitat simulator [58] to extract multimodal observations
of a scene. We obtain RGB, depth, and semantic labels in
equirectangular format from each location. To further col-
lect 3D information of a scene, we extract the meshes sur-
rounding the specified coordinate by truncating them, i.e.,
2.5m×2.5m×2m. Then, we use clustering-based filtering
to remove noisy groups of meshes and keep only the most
salient components. Finally, we generate 3D voxels from
meshes for 3D reconstruction.

We carefully exclude the samples with weak auditory
signals, such as outdoor scenes with high levels of noise, to
maintain the quality of the benchmark. Specifically, for 2D
dense prediction tasks, we eliminate samples whose labels
have more than 10% missing pixels or noisy annotations.
For 3D dense prediction, we exclude the samples with cor-
rupted voxels by selecting the 95% lower confidence bound
of the number of occupied voxels. We use 11.6K samples
for training, 1.6K samples for validation, and 2.6K samples
for testing in all experiments.

4.2. Results of Depth Estimation

4.2.1 Experiment Settings

Following previous works on depth estimation [12, 59],
we predict the depth of the whole surroundings given binau-
ral audio from the scene. We follow the decoder design of
[59] to train the model with the Inverse Huber loss. We re-
port the results of sinusoidal sweep-convolved binaural in-
puts following the convention of [27, 28, 44, 46]. We also
report the results of natural audio inputs [7] in Fig. 3-(b).

Evaluation Metrics. We report the mean absolute er-
ror (MAE), root mean squared error (RMSE), and delta
accuracy (δ1, δ2, δ3) for evaluation. MAE and RMSE re-
flect the error rate of our prediction, while the delta accu-
racy indicates the relative correctness of our prediction, i.e.,
max(aout

vout
, vout
aout

) < 1.25i. To demonstrate the efficiency of
our approach, we also report the memory allocation on GPU
and latency during training.

Baselines. We include some state-of-the-art audio-only
and distillation models as baselines [44, 8, 46], which are
originally designed to predict bounding boxes or depth
maps from a normal field-of-view with multi-channel au-
dios. We also report the performance of losses proposed in



MAE↓ RMSE↓ δ1↑ δ2↑ δ3↑
Teacher [11] 0.6524 1.1296 0.7633 0.8966 0.9328
BilinearCoAttn [46] 1.2101 1.8366 0.5128 0.7009 0.8139
BatVision [44] 0.9345 1.5740 0.6284 0.7975 0.8806
MM-DistillNet [8] 0.8995 1.5812 0.6633 0.8178 0.8902

V
→

A
U

-N
et[11]

Pseudo-GT (Lp) [6] 0.9572 1.6436 0.6258 0.7971 0.8771
+ Rank [5] 0.9524 1.6350 0.6279 0.7986 0.8786
+ MTA [8] 0.9572 1.6392 0.6243 0.7956 0.8782
+ SAMMultiHead 0.8789 1.5604 0.6774 0.8256 0.8955
+ SAMSpatialEmbeddings 0.8760 1.5468 0.6787 0.8267 0.8965
+ SAM3,4(K=1) 0.8704 1.5467 0.6857 0.8302 0.8978
+ SAM3,4 0.8633 1.5397 0.6869 0.8308 0.8982

V
→

A
D

PT
[12]

Pseudo-GT (Lp) [6] 0.8926 1.5851 0.6684 0.8243 0.8943
+ Rank [5] 0.9130 1.6017 0.6607 0.8159 0.8869
+ MTA [8] 0.8913 1.5819 0.6694 0.8263 0.8953
+ SAM4 0.8517 1.5276 0.6971 0.8344 0.8986
+ SAM3,4 0.8443 1.5351 0.7019 0.8392 0.9000
+ SAM1,2,3,4 0.8497 1.5346 0.6992 0.8380 0.9002

Table 1: Comparison of depth estimation accuracy on DAPS-Depth test split.
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Figure 3: Analysis on distillation ef-
ficiency and input generalization.

MAE↓ RMSE↓ δ1↑
Mono 1.0783 1.7543 0.5829
16× 16 Patch 0.8903 1.5786 0.6753
1×H ′ Patch (freq.) 0.8902 1.5607 0.6629
W ′ × 1 Patch (time) 0.8497 1.5346 0.6992
EmbeddingsNonSpatial 0.8777 1.5334 0.6757
EmbeddingsOracle 0.5622 1.0308 0.8156

Table 2: Influence of input representation and learnable spa-
tial embeddings in DPT+SAM on DAPS-Depth test split.

[6, 5, 8] combined with U-Net or DPT for fair comparison.

4.2.2 Results and Analyses

Comparison with Prior Arts. Table 1 summarizes the
accuracy on DAPS-Depth test split. Compared to previous
works on audio-only and distillation-based auditory depth
estimation, our method achieves significant performance
boosts across all metrics. For both U-Net and DPT, directly
minimizing the feature distance between the teacher and
the student (i.e., +Rank/MTA) contributes marginally to the
performance. Instead, adopting the proposed spatial align-
ment via matching improves the performance substantially,
up to 10% (MAE) for U-Net. It is also worth noting that U-
Net with SAM displays comparable performance with DPT
variants. One of the important aspects of our approach is
its efficiency, as illustrated in Fig. 3-(a). Compared to pre-
vious distillation methods, DPT+SAM improves both time
and space efficiency by 27%, where the gap becomes wider
for the other two tasks.

Ablation Studies. In Table 1, replacing full SAM blocks

with multi-head attention (SAMMultiHead) or learnable spa-
tial embeddings (SAMSpatialEmbeddings) deteriorates the abso-
lute error rate by 1.5-1.8%. Reducing the number of spatial
embeddings per layer to one (SAM3,4(K=1)) is also harm-
ful to performance. Increasing the number of SAM blocks
for alignment can be beneficial, but forcefully matching the
low-level vision features with audio features (i.e., SAM1,2)
does not improve the prediction accuracy.

Table 2 analyzes the influence of different patch designs
and spatial embeddings. Both frequency and time patches
are more efficient than the regular patch, but only the time
patch introduces significant performance gain. This implies
that aggregating all frequency responses per short time span
is a preferred input representation for dense auditory predic-
tion. Also, the degraded performance of RK×1×C spatial
embeddings instead of RK×Vi×C (i.e., non-spatial embed-
dings) stresses the importance of securing spatially varying
information for matching. Finally, using actual visual fea-
tures instead of learnable embeddings (i.e., oracle embed-
dings) displays on-par performance with the teacher model.

Generalization to Natural Audio Inputs. Fig. 3-(b) re-
ports the distillation performance of U-Net trained with di-
verse audio samples randomly selected from [7]. Not only
our approach consistently achieves better performance, but
the variance among different audio samples is also smaller
than in previous distillation methods.

Qualitative Results. Fig. 4 displays the depth estima-
tion results from binaural audio. Our approach can pre-
cisely measure the depth or structure of the room compared
to prior arts. In some cases, it can even capture smaller ob-
jects like a billiards table in a scene from the audio.
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Figure 4: Qualitative examples of audio-based depth estimation (upper) and semantic segmentation (lower).

pAcc↑ mAcc↑ mIoU↑ 3IoU↑
Teacher 0.737 0.708 0.409 0.705
BilinearCoAttn [46] 0.605 0.493 0.340 0.538
MM-DistillNet [8] 0.629 0.515 0.311 0.581
Pseudo-GT (Lp) [6] 0.628 0.513 0.320 0.576
+ MTA [8] 0.629 0.514 0.316 0.576
+ Rank [5] 0.642 0.520 0.359 0.587
+ SAMFull 0.644 0.526 0.363 0.600

Table 3: Comparison of semantic segmentation accuracy on
DAPS-Semantic test split.

4.3. Results of Semantic Segmentation

4.3.1 Experiment Settings

We train the audio student model to predict pixel-wise
categories of the scene. Except for the pseudo-GT learn-
ing objective Lp, we follow the training recipe explained in
Sec. 4.2. As an auxiliary task, we predict the pseudo-GT
segmentation with the penultimate layer feature for better
performance, as proposed by Zhao et al. [54]. We train the
model with the cross-entropy loss, where the primary and
auxiliary loss ratio is 1:0.2.

Since it is virtually not tractable to classify 40+ semantic
categories merely from the audio, we opt out classes about
tiny objects (e.g., towels) and merge similar classes to es-
tablish nine classes for semantic segmentation based on au-
dio. We report the performance of feature-level distillation
methods with U-Net as a backbone.

Evaluation Metrics. We report the pixel-wise accuracy
(pAcc), class-wise mean accuracy (mAcc), and class-wise
mean IoU (mIoU) for all pixels with valid labels. Since it
is challenging to label small objects in a scene with audio
precisely, we introduce the mean IoU of ceiling, wall, and
floor (3IoU) that constitutes a coarse layout of the scene.

4.3.2 Results and Analyses

Table 3 summarizes the semantic segmentation accuracy
on DAPS-Semantic test split. Although predicting mate-
rial properties or a semantic structure from auditory input
is challenging, the result suggests that the overall output is
acceptably plausible, achieving 87% of the teacher model’s
performance on the pAcc metric. Compared to depth es-
timation, the ranking-based objective fairly contributes to
the distillation performance, which could be related to the
classification error ensuring tighter bounds for ranking mea-
sures [60]. Still, SAM achieves better performance in all
metrics, especially in predicting layout-relevant categories,
i.e., +4% compared to Pseudo-GT.

Qualitative Examples. The last two rows of Fig. 4 il-
lustrate the semantic segmentation results. Our approach
can better predict the categories of smaller objects and the
layout of the indoor surroundings, even under visually ill-
posed scenarios like the windows in the third row.

4.4. Results of 3D Scene Reconstruction

4.4.1 Experiment Settings

We reconstruct a 3D scene with audio by means of voxel
super-resolution. Voxel super-resolution aims to reconstruct
high-resolution 3D objects using low-resolution voxelized
meshes as input [61]. We use a teacher model that maps
low (163) to high-resolution voxel grids (323) by capturing
structural details of 3D shapes for reconstruction. Despite
the difference in dimensions and shapes, the feature maps of
the 3D teacher U-Net are utilized to learn the spatial align-
ment with auditory features, owing to the SAM blocks.

Evaluation Metrics. Following Peng et al. [13], we re-
port IoU, Chamfer-L1 distance, normal consistency (NC),
and F1-score. We use IoU and F1 to measure the inter-
section between ground truths and predictions. Also, we
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Figure 5: Qualitative examples of audio-based 3D scene reconstruction.

IoU↑ Chamfer↓ NC↑ F1↑
Teacher [13] 0.548 0.0137 0.882 0.560
Audio-onlyMono 0.126 0.0698 0.625 0.189
Audio-onlyStereo 0.136 0.0643 0.639 0.196

[13]

MSE 0.137 0.0630 0.639 0.203
Rank [5] 0.138 0.0636 0.640 0.200
MTA [8] 0.149 0.0656 0.631 0.174U

-N
et[11]

MSE 0.150 0.0676 0.626 0.177
Rank [5] 0.153 0.0663 0.631 0.174
MTA [8] 0.159 0.0660 0.645 0.170
SAMFull 0.178 0.0555 0.679 0.203

V
iT

[12]

MSE 0.154 0.0626 0.656 0.183
Rank [5] 0.147 0.0698 0.671 0.177
MTA [8] 0.154 0.0650 0.646 0.187
SAMFull 0.178 0.0587 0.682 0.204

Table 4: Comparison of 3D scene reconstruction accuracy
on DAPS-3D test split.

evaluate Chamfer-L1 distance and NC as similarity metrics
based on multidimensional point sets and normal displace-
ment vectors, respectively.

Baselines. Due to a lack of prior research on generating
3D objects from audio, we set up several conceivable base-
lines for comparison. First, we interpolate the 2D audio
input to 3D to use ConvONet as a backbone. We report the
performance of audio-only models and their variants with
feature distillation. Second, as in the spatial alignment via
matching framework, we use the 2D audio input as is and
convert intermediate feature maps to match the shape of 3D
features. We use U-Net [11] and ViT [57] as backbones to
show that our approach can be applied to various encoder
structures, where we include the ranking [5] or MTA [8]
objectives for cross-modal distillation as baselines.

4.4.2 Results and Analyses

Table 4 reports the 3D scene reconstruction performance
on DAPS-3D test split. Due to task difficulty, the perfor-
mance gap between the teacher and the student is wider than
2D dense prediction tasks. Still, our approach improves the
IoU score by 40% compared to audio-only models. Instead
of forcefully converting the audio input representation, re-
ducing the feature distance while keeping the audio input
intact generally performs better. Lower Chamfer-L1 scores
of our approach, i.e., an 18% reduction for the U-Net back-
bone, suggest that SAM facilitates the generation of points
that are significantly closer to the ground truth.

Qualitative Examples. Fig. 5 visualizes our audio-
based 3D scene reconstruction results. In the absence of vi-
sual cues, our approach accurately predicts the closed walls
in a scene, even capturing details like holes (e.g., doors or
windows) and furniture. The substantial gap of quality be-
tween ours and prior arts in an open space (the last row of
Fig. 5) stresses the importance of our distillation framework
for dense prediction of 3D surroundings.

5. Conclusion
We addressed the audio-based dense prediction of indoor

surroundings in 2D and 3D for the first time, addressing
the challenges in vision-to-audio knowledge distillation: the
discrepancy between the two modalities. To this end, we
presented a novel spatial alignment via matching (SAM)
distillation framework, accounting for local correspondence
of multi-scale features with input shape inconsistency. In
experiments in a newly collected DAPS dataset, our dis-
tillation framework consistently improves the performance
across multiple tasks ranging from 2D to 3D with various
architectures as backbones. Qualitative results indicate that
our approach better captures fine-grained information about
the scene from the auditory input compared to prior arts.
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