Panoramic Vision Transformer for Saliency Detection in 360° Videos

Heeseung Yun, Sehun Lee, Gunhee Kim

360° Video Saliency Detection

- One of the core problems in 360° video understanding
 - Captures whole surroundings of a scene instead of specific predetermined context
- Directly related to practical scenarios
 - 360° video summarization (*i.e.*, cinematography)
 - Dynamic rendering for VR

360° Video Saliency Detection

- A simple tricky question
 - "Which direction to watch if you were in the scene?"
- Problem 1. architecture design for panoramic videos
 Taking distortion & discontinuity into account
- Problem 2. modeling "saliency" in panoramic videos
 - Often ambiguous and subjective

- Ignoring geometric property
 - 😫 Simple
 - Dense NFoV projection is not scalable

- Using designated architecture
 - Well-tailored for spherical input format
 - **Not transferrable**

Esteves et al. Learning SO(3) Equivariant Representations with Spherical CNNs. In ECCV 2018. Lee et al. SpherePHD: Applying CNNs on a Spherical PolyHeDron Representation of 360 Images. In CVPR 2019.

- Additional modules & training for geometric adaptation
 - Transferrable architecture
 - Training overhead, layerwise error accumulation

- Previous approaches
 - Ignoring geometric property
 - Using designated architecture
 - Additional modules & training for geometric adaptation
- Solution: Local patch-based modeling
 - Geometry-aware approximation
 - Transferrable from most Vision Transformer (ViT) variants
 - Wo additional modules or training for geometric adaptation
 - (Applicable to various 360° video formats

Modeling Saliency in Panoramic Videos

- Saliency itself is a longstanding question in CV
 - Saliency as self-information, anomaly, class activation, etc.
- "Which direction to watch if you were in the scene?"
 - Ambiguity and subjectivity
 - Supervised learning usually inapplicable
- Solution: leverage features from NFoV domain
 - Rich and readily available pretrained knowledge
 - Spatio-temporal feature consistency suffices for 360° video saliency

- Panoramic Vision Transformer for 360° videos
 - First to adopt ViT to encode omnidirectional imagery
 - No additional module, trivial overhead, video format-agnostic
 - Do not require class activation, optical flow for saliency
 - Competitive results in 360° video saliency detection & quality assessment

• Panoramic Vision Transformer: Encoder

• Panoramic Vision Transformer: Decoder

• Panoramic Vision Transformer: Decoder

• 360° video saliency detection (Wild360)

Cheng et al. Cube Padding for Weakly-Supervised Saliency Prediction in 360 Videos. In CVPR 2018.

• 360° video saliency detection (Wild360)

• 360° video saliency detection (Wild360)

Saliency score decomposition

Transfer from different pretrained knowledge

Applying to various 360° video formats

- Video quality assessment of 360° videos (VQA-ODV)
 - Relevant to rendering quality control in VR pipeline

Li et al. Bridge the Gap Between VQA and Human Behavior on Omnidirectional Video. In ACM MM 2018.

Concluding Remarks

- Local patch-based architecture for 360° videos
 - First attempt to adopt ViT to encode omnidirectional imagery
 - No additional module, trivial overhead
- Spatio-temporal consistency of local patch features for measuring saliency
 - Leverage pretrained knowledge
 - Independent of class activation, optical flow, etc.
- Competitive results in 360° video saliency detection & quality assessment

