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Abstract

Previous models for vision-to-language generation tasks

usually pretrain a visual encoder and a language generator

in the respective domains and jointly finetune them with the

target task. However, this direct transfer practice may suf-

fer from the discord between visual specificity and language

fluency since they are often separately trained from large

corpora of visual and text data with no common ground. In

this work, we claim that a transitional adaptation task is

required between pretraining and finetuning to harmonize

the visual encoder and the language model for challenging

downstream target tasks like visual storytelling. We propose

a novel approach named Transitional Adaptation of Pre-

trained Model (TAPM) that adapts the multi-modal modules

to each other with a simpler alignment task between visual

inputs only with no need for text labels. Through extensive

experiments, we show that the adaptation step significantly

improves the performance of multiple language models for

sequential video and image captioning tasks. We achieve

new state-of-the-art performance on both language metrics

and human evaluation in the multi-sentence description task

of LSMDC 2019 [50] and the image storytelling task of

VIST [18]. Our experiments reveal that this improvement

in caption quality does not depend on the specific choice of

language models.

1. Introduction

Most models for vision-to-language generation tasks

consist of a visual encoder to extract visual information

from input images or videos, a language model to gener-

ate text sentences, and a mechanism to weld the two mod-

ules into one harmonized architecture. For example, recent

models for visual captioning [7, 59] adopt a pretrained vi-

sual encoder and a pretrained language generator and then

optimize the target cross-modal generation objective with

the downstream datasets [63, 40, 49, 67, 69, 74]. In this pro-
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Figure 1. Comparison between existing captioning models and

our Transitional Adaptation of Pretrained Model (TAPM). (a) Pre-

vious captioning models start from a pretrained visual encoder and

a language generator and then directly finetune with the down-

stream datasets. (b) TAPM includes a simple pretext task as an

adaptation process that harmonizes the generator with the visual

encoder before optimizing the target objective.

cess, however, no transitional adaptation step has proposed

to match the potentially substantial differences between the

information stored in the visual encoder and the language

generator, as they are separately trained from large sets of

visual and text data with no common ground (e.g. images

from ImageNet and text from Wikipedia).

This work is motivated by that this direct transfer of pre-

trained models to a downstream task may suffer from the

dissonance between visual specificity and language fluency.

For example, finetuning pretrained language models on an-

other target task may result in catastrophic forgetting of the

language generation capability [8, 66]. Moreover, existing

captioning models have often been criticized for not suf-

ficiently conditioning on the visual context and thus lack

visual discriminability [34, 36].

Considering the potentially vast gap between the nature

of the information stored in the visual encoder and the lan-

guage decoder, it would be difficult for them to work in har-

mony at once for another challenging objective of vision-
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to-language generation. In this light, we believe a simpler

objective dedicated to improving coordination between the

two separately pretrained models could help the model get

prepared for the target objective eventually better and faster.

Therefore, we present Transitional Adaptation of Pre-

trained Model (TAPM) for visual storytelling as the first

approach that proposes an explicit visual adaptation step to

harmonize the visual encoder with the pretrained language

models as depicted in Fig. 1. Our adaptation step can be

trained with only visual inputs, such as images or videos

with no text label. We outline the contributions of this work

as follows:

1. Our work is the first attempt to demonstrate an auxil-

iary adaptation loss’s effectiveness in welding a visual

encoder with a pretrained language model. By exten-

sive experiments, we show that this additional adap-

tation between pretraining and finetuning consistently

improves the captioning quality of various language

models such as GPT-2 [45], XLM [14], and QRNN [5].

2. We present the sequential coherence loss that can

adapt the language generator using only sequential

video/image inputs with no text label. We also intro-

duce two recipes critical to TAPM’s success: (i) using

the language model outputs for adaptation training and

(ii) using the split-training process.

3. We evaluate TAPM in two storytelling tasks: sequen-

tial video captioning in the LSMDC 2019 [50] and

sequential image captioning in VIST [18]. TAPM

achieves new state-of-the-art performance in both

tasks in terms of automatic language metrics and hu-

man evaluation.

2. Related Work

Visual Storytelling. Unlike direct and literal descrip-

tions, visual storytelling aims to generate a more figu-

rative and consistent narrative for consecutive images or

videos [18]. Some earlier works [23, 24] explore the sum-

marization of long videos into the storyline representation.

Park et al. [41, 42] integrate an entity-based local coherence

model to generate a coherent flow of multiple sentences

for a photo album. Fan et al. [9] use a shorter prompt as

the intermediate representation. Jain et al. [19] combine

SMTs and RNNs to merge independent descriptions into a

coherent story. Huang et al. [17] propose a two-level hier-

archical RL-based decoder to plan a semantic topic first and

then generate consistent sentences. Tang et al. [58] employ

an attribute-based hierarchical decoder to create paragraphs

using policy gradient with word-level rewards and adver-

sarial training. Fan et al. [10] exploit a predicate-argument

structure of the text to build coherent stories. Gella et

al. [11] introduce the VideoStory dataset for generating sto-

ries from social media videos. AdvInf [43] uses adversarial

inference and MART [28] memory augmented transformer

to generate paragraph-level captions.

Most previous works on visual storytelling require both

visual encoder and language generator. Our work is orthog-

onally applicable to these approaches to better adapt the lan-

guage decoder for visual context before training the models

with the main vision-to-language objective, including Rein-

forcement and adversarial learning.

Auxiliary Losses for Captioning. Autoregressive lan-

guage models trained with cross-entropy often suffer from

exposure bias [3]. Several works on captioning have lever-

aged reinforcement learning by using rewards as auxiliary

loss signals to ameliorate this bias. Zhang et al. [71] di-

rectly optimize language quality metrics with an actor-critic

framework. Liu et al. [33] optimize a linear combination

of language metrics using Monte Carlo rollouts. SCST

[48] improves the REINFORCE algorithm to correctly nor-

malize external rewards using the test-time inference algo-

rithm’s output. Ren et al. [47] use the embedding similarity

between generated sentences and image features as the re-

ward. These reinforcement learning approaches have been

extended to the video captioning problem [30, 65]. While

reinforcement learning can help training non-differentiable

objectives, it is known to be unstable [60]. Other types of

auxiliary losses have also been adopted for captioning prob-

lems. Ma et al. [37] employ the cyclic reconstruction to

enforce the localization of each word in an image. Zhou

et al. [73] add visual grounding supervision to enhance the

sentence generation quality. HINT [52] learns to match the

attention map to human attention for grounded image cap-

tioning. VideoBERT [56] extends the text-based BERT to

build bidirectional modeling between videos and captions.

Compared to previous work, our work does not require ad-

ditional visual caption data since it takes self-supervision

losses with only sequential visual inputs.

Pretrained Models for Vision-to-Language Tasks.

Recently, many works have demonstrated the power of self-

supervision based representation learning in cross-modal

settings. LXMERT [57] and ViLBERT [35] pretrain two-

stream transformers on various tasks including masked

cross-modal language model (LM) objectives. LXMERT

is extended later with adaptive sparse attention [4]. Visu-

alBERT [31] and VL-BERT [54] uses single-stream trans-

formers. CMR [72] models the relevance between the tex-

tual entities and visual entities. UNITER [6] and Unicoder-

VL [29] use object detection based objectives in addition to

the masked LM loss. VideoBERT [56] trains a transformer

for video-language tasks using vector quantization to cate-

gorize videos into discrete tokens. CBT [55] replaces the

softmax loss of BERT with noise contrastive estimation.

These approaches aim to learn general representations,
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and our method adapts the trained representations to the

target cross-modal generation tasks. Thus, our model is or-

thogonal to the aforementioned self-supervised representa-

tions and consistently improves the final performance even

with the self-supervised representation. Furthermore, they

often use the masked cross-modal objectives that require

both visual data and associated sentences (with blanks);

contrarily, our method does not require text data at all for

self-supervision.

3. Approach

We demonstrate our TAPM approach in visual story-

telling tasks, which are a sequential extension of visual cap-

tioning. Its goal is to generate coherent C sentences for C

visual inputs of video clips or images. We henceforth ex-

plain our model in the context of sequential video caption-

ing because it subsumes sequential image captioning.

Fig. 2 illustrates the overall architecture, which consists

of the visual encoder (section 3.1) and the language gener-

ator (section 3.2). We train the visual encoder and the lan-

guage generator with the adaptation loss before finetuning

them with the downstream captioning tasks (section 3.3).

We employ the sequential coherence loss as the adaptation

loss to encourage both distinctiveness and coherence in se-

quential captions. These losses are applied to the language

model outputs in order to update the visual encoder in ac-

cordance with the language model (section 3.5). Finally, the

encoder and the generator are trained with the target objec-

tive of visual storytelling.

For overall training, we use a split-training approach

(section 3.5) that helps the decoder retain language gener-

ation capability. Since the adaptation loss is not a genera-

tion loss, it may degrade the language understanding of the

pretrained language model. Hence, split-training fixes the

language generator weights during the adaptation phase.

3.1. The Visual Encoder

Given a video clip, we utilize pretrained feature extrac-

tors to extract vector feature vij for each frame j. The set

of pretrained feature extractors varies depending on datasets

and will be covered in section 4.1. We then reduce the vec-

tors to M segments by mean-pooling them over temporal

dimension.

With the extracted features of a video clip Vi =
{vi1, . . . ,viM} as inputs, the visual encoder builds task-

specific representations Vi = {vi1, . . . ,viM}. Our visual

encoder consists of two fully connected (FC) layers fol-

lowed by Leaky ReLU [38], three layers of residual blocks,

and a final self-attention layer [61]. A residual block con-

sists of two FC layers and a ReLU activation [12]. After

processing the visual inputs, we mean-pool the previous and

next frame representation and concatenate them to the cur-

rent representation to encode the context information.

3.2. The Language Generator

For the language generator, one can use any language

model. In our experiments, it is implemented by (but not

confined to) GPT-2 [45], GPT [44], XLM [14], QRNN [5],

and LSTM [16]. We use GPT-2-small [45] pretrained on a

corpus dataset of 8 million web pages as the default genera-

tor due to its best performance among other language model

s. We will report the results of other language models in

section 4.3.

3.3. Adaptation training

We train the visual encoder with a simple auxiliary ob-

jective to harmonize it with the language generator in the

adaptation phase. Here, we describe how to encode the vi-

sual and text representations for calculating the adaptation

loss given the video inputs. The adaptation loss for visual

storytelling will be discussed in the next section.

The language generator takes the task-specific represen-

tation Vi from the visual encoder as inputs and generates

the contextualized representation for visual Ṽi and text ŝi.

Specifically, the input Xi to the generator is

Xi = [Vi, [sep], [dummy]], (1)

where [sep] and [dummy] are respectively separation and

dummy tokens. Remind that Vi is a sequence of vectors

with the number of segments M . Then the generator out-

puts

X̃i = [Ṽi, [sep], ŝi], (2)

where ŝi can be regarded as the text representation that the

generator predicts for a sequential video input Vi.

Finally, the visual representation v̂i is obtained by mean-

pooling the sequence representation Ṽi to a single vector.

Note that the adaptation step does not use the caption label

but inputs a dummy token into the generator to obtain text

information. Thus, we can train the language generator with

video-only datasets. While the dummy token can be arbi-

trarily selected from the pretrained vocabulary, we resort to

the start-of-sentence token for all reported experiments. As

will be shown in Table 3, TAPM with the dummy token per-

forms comparably with the ground truth captions.

3.4. The Sequential Coherence Loss

Visual storytelling is the problem of generating expres-

sive, aligned, and coherent captions from a sequence of

semantically connected visual inputs (e.g. videos or photo

streams). Consecutive images or video clips tend to share

common backgrounds, characters, and objects.

This closeness makes those visual features similar, and

as a result, the captions generated from them overlap one

another. To make consecutive captions not too overlapped
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Figure 2. Illustration of the proposed TAPM framework. (a) TAPM harmonizes a pretrained visual encoder (section 3.1) with a pretrained

language generator (section 3.2) to improve a target captioning task. In the adaptation phase, the model takes only videos (or images) as

the input. Given a video, the language generator builds the corresponding video embedding (v̂i) and text embedding (ŝi) per each video.

(b) We introduce sequential coherence loss to improve temporal coherence in visual storytelling tasks. We first use the respective FC layers

(fp, fc and ff ) to project the text embedding (ŝi) into the past, current, and future visual space. We then encourage the respective past,

current, and future text embedding to be closer to their corresponding visual representations (Pull (Green arrows)) than the other visual

representations (Push (Red arrows)).

but still coherent, we introduce the sequential coherence

loss to build text representation of each visual input.

The sequential coherence loss enforces the text represen-

tation of a clip to predict the visual representations within

its closed neighborhood well. We divide the sequential co-

herence loss into three parts of the past, current, and future

matching loss for a better explanation. First, the past match-

ing loss projects the text representation ŝi of video i by an

FC layer fp and makes it closer to the visual representa-

tion v̂i−1 of the previous video i− 1 than the other videos,

as in Figure 2. Second, the future matching loss is almost

identical to the past matching loss except that it projects ŝi
with a different FC layer ff and matches with the next vi-

sual representation v̂i+1. Finally, the current matching loss

matches the current visual representation v̂i with ŝi through

an FC layer f c. They are similar in that the text represen-

tation is projected in the past, future, current visual space

by an FC layer and then drives the embeddings of correct

matches closer (pull) and those of wrong matches farther

away from each other (push).

To implement this notion, we employ margin ranking

losses between correct matches and other wrong ones. The

final loss is the sum of the past, current, and future matching

losses as follows:

Li =
∑

j 6=i−1

max(0, 1 + v̂j ∗ f
p(ŝi)− v̂i−1 ∗ f

p(ŝi)) (3)

+
∑

j 6=i

max(0, 1 + v̂j ∗ f
c(ŝi)− v̂i ∗ f

c(ŝi))

+
∑

j 6=i+1

max(0, 1 + v̂j ∗ f
f (ŝi)− v̂i+1 ∗ f

f (ŝi)),

where the operator ∗ denotes the cosine similarity, and j

indicates the index for wrong matches.

3.5. Training with the adaptation Loss

Use of Language Model Outputs. As described in the

previous sections, our adaptation losses use the visual repre-

sentation processed with the language model rather than the

visual encoder outputs. Using the language model outputs

enables the adaptation losses to update the visual encoder in

accordance with the language model. On the other hand, us-

ing the encoder outputs would update the visual encoder in

isolation. In Table 3, we will show that adaptation using the

encoder outputs (TAPM+VisualA) does not improve upon

the baseline (TAPM-A), while adaptation on the language

model outputs (TAPM) does. Thus, this scheme is crucial

to train the visual encoder in coordination with the language

model to benefit the target task.

Split-Training. We split the training process into two

phases: the adaptation loss step and the caption generation

loss step. First, the visual encoder is updated for a given

number of epochs by the adaptation loss, while the text en-

coder and the language generator are fixed. Then, we jointly

update all the components with the generation loss. By

splitting the training process, we give the model a chance

to optimize the simpler adaptation task long enough before

being presented with the harder generation objective. Fix-

ing the language generator during the adaptation loss step

prevents catastrophic forgetting of the language generation

capability. Our ablation study in section 4.3 confirms that

the split training leads to significant performance gains.
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3.6. Finetuning and Inference

Target-Task Training. After adaptation training, we

can finetune the language generator to the downstream cap-

tioning task with ground-truth data, where we input C pairs

of video clips (or images) and text descriptions one by one:

{V1,S1, . . . ,VC ,SC}. We use the teacher forcing as the

training scheme with the cross-entropy loss:

LG
i = −

L∑

l=1

V∑

v=1

yvil log p
v
il, (4)

where v ∈ {1, . . . , V } is the vocabulary index, pil is the

prediction probability for the l-th token in Si, and yil is

the ground truth label. Finally, the language model head

generates a caption output, consisting of a single FC layer

that maps each vector of the language model outputs S̃i to

a softmax layer to obtain the word probability pi of each

token over vocabulary.

Cross-Modal Generation. At inference, our goal is

to generate a coherent sequence of C sentences for a vi-

sual test sample {V1, . . . ,VC}. We first use the vi-

sual encoder to build the visual embedding Vi for i =
1, . . . , C. We then generate each sentence auto-regressively

using the finetuned language generator. In the decoding

step l for Vi (i.e., the i-th output sentence is generated

up to l − 1 words), the input to the language genera-

tor is [Vi, [sep], [dummy], si1, . . . , sil−1]. We can obtain

the word probability pil with the output of the language

generator s̃il−1, and finally select the next word sil =
argmaxv pil. We iterate this until the end-of-sentence to-

ken [eos] appears, or the output sentence reaches the prede-

fined maximum length.

4. Experiments

We evaluate the TAPM approach in two visual sto-

rytelling tasks: sequential video captioning in LSMDC

2019 [50] and image captioning in VIST [18]. For both

tasks, we achieve new state-of-the-art performance in both

automatic evaluation (section 4.2) and human evaluation

(section 4.4). We also perform various empirical analyses

of our TAPM across various language models (section 4.3).

Furthermore, we demonstrate that TAPM can benefit from

additional visual-only datasets. TAPM is also extendable to

other visual-linguistic tasks such as VQA and cross-modal

retrieval, as shown in Appendix.

4.1. Experimental Setup

Datasets. The Multi-Sentence Description of LSMDC

2019 [50] is the task of generating consecutive captions for

multiple short movie clips. For a given set of five clips,

the model generates five sentences maintaining logical and

contextual consistency. The dataset contains 128,085 clips

Table 1. Quantitative results on the LSMDC 2019 [50] public and

blind test set. XE and AREL do not report the blind test score

because they are not challenge participants. C stands for CIDEr

and M for METEOR. All tests are done on the set level.

Public Test Blind Test

Models C M C M

Official Baseline [43] 7.0 12.0 6.9 11.9

XE [64] 7.2 11.5 - -

AREL [64] 7.3 11.4 - -

TAPM (ours) 10.0 12.3 8.8 12.4

Table 2. Quantitative results on the VIST [18] test set. R stands for

ROUGE-L.

Models C M R

Huang et al.[18] - 31.4 -

h-attn-rank[68] 7.5 34.1 29.5

GLACNet[25] - 30.1 -

CST[13] 5.1 34.4 29.2

BLEU-RL[64] 8.9 34.6 29.0

CIDEr-RL[64] 8.1 34.9 29.7

GAN[64] 9.1 35.0 29.5

AREL[64] 9.4 35.0 29.5

StoryAnchor[70] 9.9 35.5 30.0

HSRL[17] 10.7 35.2 30.8

INet[21] 10.0 35.6 29.7

TAPM (ours) 13.8 37.2 33.1

Table 3. Ablation results of our TAPM model on the LSMDC 2019

public test set and the VIST test set. The evaluations for LSMDC

are done on the sentence level.

LSMDC VIST

Models C M R C M R

Baseline[43] 11.90 8.25 - - - -

Baseline+GPT-2[45] 8.65 7.75 19.90 - - -

TAPM (ours) 15.37 8.41 20.21 8.3 34.1 30.2

-A 14.54 8.27 19.89 4.8 33.6 29.9

+Cap 15.29 8.47 20.19 6.7 33.8 29.8

+VisualA 14.59 8.37 20.00 4.9 33.0 29.9

-Split 14.28 8.34 19.71 4.5 32.8 29.8

-A+Split 14.01 8.28 19.60 6.5 33.8 30.0

from 200 movies and has four splits; 20,283 training, 1,486

validation, 2,018 public test, and 1,923 blind test samples.

Following the challenge protocol, we combine the train and

validation split as training data. The official performance

is evaluated on the blind test split hidden from participants,

while ablation studies are conducted on the public test split.

VIST [18] is a visual storytelling dataset, including

10,117 Flickr albums with 210,819 unique photos. Each

story of VIST contains five sequential images with the cor-

responding captions. We use the SIS (Stories of Images in

Sequence) tier that has more storytelling elements. Ignoring

broken images, we use 40,071 training, 4,988 validation,

and 5,050 testing story samples. In all experiments, we use

the training/test split of [18, 68, 64]. As in [64], we evaluate
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Table 4. Comparison between language models on LSMDC 2019 public test set. C, M, and R denote CIDEr, METEOR, and ROUGE-L,

respectively. All evaluations are on the sentence level.

No Adaptation Adaptation (No split-training) Adaptation (split-training)

Models C M R C M R C M R

Baseline [43] 11.90 8.25 - - - - - - -

LSTM-WT2 3.00 5.73 17.13 1.41 4.60 12.83 7.36 8.47 20.40

XLM [14] 10.05 7.09 19.01 7.50 6.95 17.66 13.11 8.00 20.01

GPT [44] 14.01 7.96 19.84 11.81 7.86 19.23 14.76 8.33 20.07

GPT-2 14.54 8.27 19.89 14.28 8.34 19.71 15.37 8.41 20.21

Table 5. (a) Official human evaluation results on the LSMDC 2019 blind test set. Lower is better. (b) Human evaluation results on VIST.

Higher is better.

(a) Models Scores

Human 1.085

Official Baseline [43] 4.015

TAPM (ours) 3.670

(b) TAPM vs XE TAPM vs AREL

Choice (%) TAPM XE Tie TAPM AREL Tie

Relevance 59.9 34.1 6.0 61.3 32.8 5.9

Expressiveness 57.3 32.3 10.4 57.3 34.0 8.7

Concreteness 59.1 30.3 10.7 59.6 30.4 10.0

Table 6. Results with additional visual-only data provided in the

adaptation phase. The performance rises with the number of addi-

tional videos. C, M and R denotes CIDEr, METEOR and ROUGE-

L, respectively.

Models Videos C M R

Baseline (Ours) 108,487 15.37 8.41 20.21

+ Additional LSMDC 10,053 15.49 8.51 20.26

+ Additional ActivityNet 480,860 16.48 8.67 20.35

at the album level by allowing only one story candidate per

album regardless of photo sequences.

Data Preprocessing. For LSMDC 2019, we use the

ResNet [15] pretrained on ImageNet [51] to extract frame

features as in [48, 1]. For the challenge submission and

human evaluation, we add the I3D feature [20] pretrained

on Kinetics [22] as done in the official baseline [43]. We

equally segment a video clip into three subshots and repre-

sent each by mean-pooling the features of frames. For the

challenge results, we use set level evaluation by concate-

nating all captions within a set of 5 clips as dictated by the

organizers. For ablation study, we use individual sentence

level evaluation to compare with non-sequential generation

models fairly. For VIST, we use the same ResNet extrac-

tor and additional features of object bounding boxes from

Faster R-CNN [46] pretrained on Visual Genome [27]. We

choose at most 20 objects with the highest likelihood per

image from the R-CNN [46] detection results. After pro-

cessing each feature through the visual encoder, we con-

catenate all features along the temporal dimension with a

special separator token between them. We tokenize and nu-

mericalize the text using Byte Pair Encoding [53] for pre-

trained language models while using the whitespace tok-

enizer for the no pretrained models. In VIST, we use the

default tokenizer to re-tokenize our generated samples for

evaluation. We generate each caption with beam search up

to 30 tokens and cut every ground truth sentence to the max-

imum length of 50 tokens for all experiments.

Metrics. We use three n-gram based metrics to evalu-

ate our approach: CIDEr [62], METEOR [2] and ROUGE-

L [32]. CIDEr captures consensus by applying Term Fre-

quency Inverse Document Frequency (TF-IDF) weighting

for each n-gram. METEOR scores the sequence matches

with explicit alignment at the sentence level. ROUGE-L is a

recall-based metric computed with the length of the longest

common subsequence. For computing METEOR in VIST,

we use the official VIST challenge evaluation code 1. All

the other metric scores are computed with the pycocoeval-

cap library 2.

Baselines. For LSMDC 2019, we compare our approach

with the official baseline [50, 43]. We also adapt XE and

AREL models [64] to LSMDC using the official codes.

For VIST, we compare TAPM with eight state-of-the-art

methods: GLACNet [25], h-attn-rank [68], Contextualize,

Show and Tell (CST) [13], BLEU-RL [64], CIDEr-RL [64],

GAN [64], AREL [64], StoryAnchor [70], HSRL [17], and

INet [21]. The scores for BLEU-RL, CIDEr-RL, and AREL

are referred from [64], while the results of GLACNet, CST,

StoryAncher, HSRL, and INet are referred from the respec-

tive papers. We use XE and AREL as baselines for human

evaluation on the VIST dataset. XE shares the architecture

of AREL except for the lack of adversarial rewards. We use

the publicly available codes for both models.

Hyperparameters. Unless we mention it explicitly, we

fix all random seeds to 0. For training, we use Adam op-

timizer [26] with linear learning rate decay. The learning

rate is 5e − 5, which is warmed up for the first 4000 steps.

1https://github.com/windx0303/VIST-Challenge-NAACL-2018
2https://github.com/tylin/coco-caption
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We apply 0.5 dropout on the language generator outputs. In

all experiments, we use the batch size of 8. For LSMDC

dataset we train the adaptation loss for 5 epochs, whereas

we train for 3 epochs in case of VIST dataset. We train all

models up to 30 epochs.

4.2. Quantitative Results

We use OpenAI GPT-2 [45] as our default language gen-

erator due to its best performance among other language

models. We use beam search with a size of 3 for the results

in this section and section 4.4 and use a greedy search for

the results in section 4.3 for faster computation.

Table 1 outlines the results of sequential video caption-

ing on the LSMDC 2019 blind test set. Our TAPM method

outperforms the strong adversarial inference official base-

line [43] as well as the XE and AREL model in all metrics.

Notably, our method shows significant gaps in the CIDEr

metric, which is designed to score human-likeness [62].

Table 2 compares the results of sequential image cap-

tioning on the VIST test set. We report the scores computed

using only one story per album following previous works.

Even without explicitly optimizing the language metrics,

our method is competent in the automatic evaluation. In

CIDEr, our approach exhibits significant performance gains

over the best-performing model AREL [64]. Our model

also achieves the highest ROUGE accuracy and on-par ME-

TEOR performance with the baselines.

4.3. Further Analyses

We perform various empirical analyses of our TAPM

model, including (i) ablation study to inspect the contribu-

tions of key ingredients and use of (ii) six other language

models beyond GPT-2.

Ablation Study. We conduct an ablation study for the

TAPM model in both LSMDC 2019 and VIST dataset. We

test six variants: (i) (-A) removes the adaptation loss train-

ing, (ii) (+Cap) uses the ground truth captions instead of the

dummy token, (iii) (+VisualA) applies the adaptation loss to

the visual encoder output instead of the language generator

output, (iv) (-Split) uses naive joint training of the adap-

tation and generation loss, (v) (-A+Split) is (-A) that uses

split-training between the visual encoder and the generator,

Table 3 compares the results of the ablation variants. The

performance of TAPM is comparable to that of TAPM+Cap,

suggesting that adaptation with videos only is as successful

as the supervision with the caption labels.

The slight performance drop from TAPM to TAPM-Split

shows that naive joint training can be even worse than train-

ing without the adaptation loss. Significant degradation

from TAPM-A to TAPM-A+Split proves the split training

without the adaptation loss performs the worst. The results

of TAPM+VisualA show that applying adaptation loss to vi-

sual encoder outputs does not improve the caption quality.

Hence, using language model outputs for adaptation is cru-

cial. Our model, TAPM, performs the best when used as

proposed.

Additionally, we replace the backbone of the baseline

model [43] from the RNN encoder to GPT-2 pretrained lan-

guage generator [45]. As shown in the table’s first two rows,

the modified model performs even worse than the original

baseline. This performance drop verifies our claim that em-

ploying a stronger language model does not automatically

lead to a better storytelling capability. A stronger textual

prior may weaken the visual conditioning when the visually

conditioned target data size is insufficient. Without a proper

adaptation step, the model would generate less visually rel-

evant captions when using a strong language model such as

GPT-2. Hence, the performance improvement of TAPM is

attributable to the adaptation step rather than the strength of

the language model.

Other Language Models. We test the generaliza-

tion capability of TAPM using three pretrained language

models, including LSTM-WT2 [16], XLM [14], and

GPT [44]. LSTM [16] is an extension of RNN enlarg-

ing its memory capacity. We pretrain an LSTM-based

two-layer encoder-decoder architecture on the WikiText-2

dataset [39]. XLM [14] is a multilingual language model

designed to exploit both monolingual data and aligned bilin-

gual data. GPT [44] is the predecessor of GPT-2. Table 4

compares the result of different language models. For all

models, split-training with the adaptation loss contributes

to consistent improvement in the language metrics, while

naive joint training results in performance drops in terms of

CIDEr and METEOR. These results prove that our TAPM

method can improve the visual storytelling performance

of a wide range of language models. Furthermore, both

the adaptation loss and the split training are necessary to

achieve the enhancement.

Additional Visual-Only Data. By not relying on

ground-truth captions during the adaptation phase, we can

exploit additional visual-only data. In Table 6, we perform

experiments using additional video-only dataset to further

improve TAPM in LSMDC. The generation performance

increases along with the number of videos used, indicating

that TAPM can use visual-only data to improve cross-modal

generation capability.

4.4. Human Evaluation Results

We opt for human evaluation to robustly evaluate the

captioning quality of our approach. As pointed out in [64],

the automatic metrics often fail to capture expressiveness

and coherence within a story. Please refer to [64] for details

on the limitations of the language metrics for story evalua-

tion.

Table 5 (a) shows human evaluation results conducted

by the LSMDC 2019 challenge organizers. For 150 ran-
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[female] is scared, she's 

getting married. 

this is her first wedding 

photo. 

and here she is with 

everyone in the wedding. 

this is [male], her husband 

with location, the best man.

here's [male] and his family.
GT

XE
the bride was so happy to 

be married. 

it was a beautiful day for 

the wedding.

the bride and groom were 

very happy to be married. 

the bride and groom were 

very happy to be married. 
the bride and groom pose 

for a picture.

AREL
it was a beautiful day for 

the wedding.

i had a great time there. the bride and groom were 

so happy to be married.

then the bride and groom 

walked down the aisle.

the bride and groom pose 

for a picture.

TAPM

(Ours)

it was a beautiful day for 

the wedding.

they went down the stairs

to get to the reception.

the bride and groom posed 

for pictures.

after the ceremony, the 

groom and the groom's 

father pose for a picture.

all of the guests were 

happy to be at the wedding.

Figure 3. Qualitative comparison of sequential image captioning between our method and selected baselines on the VIST dataset. Blue and

red fonts indicate correct and erroneous descriptions, respectively. Green shows the coherence between sentences. In the second sentence

generated by TAPM, the model explains why the couple is going down the stairs.

dom sets of clips, human annotators rate generated multi-

sentence descriptions from 5 (worst) to 1 (best) based on

how helpful they are for a blind person to understand what

is happening in the movie. To account for variability in hu-

man decisions, they aggregate three human judgments per

caption and report the median score. We observe that TAPM

is superior to the strong adversarial baseline [43].

For VIST, we follow previous research [64] to perform

the pairwise comparison test, comparing a pair of gener-

ated samples by two methods. We ask human annotators to

choose a better story between the two models’ outputs for

three aspects: relevance, expressiveness, and concreteness.

The judges can conclude that the two samples are equally

good. We randomly select 150 photo sequences and collect

the medians of scores from five workers per test sample. For

baselines of XE and AREL, we reproduce the results using

the code and parameters provided by the original authors.

Table 5 (b) shows that our TAPM outperforms the base-

lines in all three aspects by large margins. The performance

gain of our model is the most significant in terms of rel-

evance. The gain suggests that the captions generated by

TAPM reflect the pictorial narrative better than the base-

lines since the relevance measures how accurately the story

describes what is happening in the image sequence.

4.5. Qualitative Results

Fig. 3 presents a VIST example to compare the captions

of TAPM against the baselines. Our generated output can

avoid using some wrong words like bride, unlike the base-

lines. Furthermore, TAPM notably captures the causal re-

lationship between the images well. In the second picture,

TAPM states the purpose of going down the stairs is to get

to the reception and deduces that the ceremony is over with

the third picture. The readers can find more examples in

Appendix.

5. Conclusion

We proposed the Transitional Adaptation of Pretrained

Model (TAPM) method for harmonizing the pretrained lan-

guage model with the visual encoder for vision-to-language

generation tasks. Extensive experiments showed that the

adaptation phase using the adaptation loss consistently im-

proves the caption quality across several language models

and loss types. Our model achieved competitive perfor-

mance in both automatic metrics and human evaluation for

two visual storytelling tasks: the multi-sentence descrip-

tion of LSMDC 2019 and the image storytelling of VIST.

There are several directions beyond this work. First, we can

explore other adaptation loss types to improve the visual

understanding capability of the pretrained language mod-

els that have proven their strengths in many language tasks.

Second, one can apply our method to other cross-modal

generation tasks utilizing the pretrained language models

beyond visual storytelling.
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